Основно съдържание
11. клас (България) Профилирана подготовка Модул 2 Елементи на математическия анализ
Курс: 11. клас (България) Профилирана подготовка Модул 2 Елементи на математическия анализ > Раздел 4
Урок 5: Съставна функция- Въведение към сложни функции
- Въведение към сложни функции
- Съставяне на функция от функция
- Изчисляване на съставни функции
- Изчислявай съставни функции
- Изчисляване на сложни съставни функции: използване на таблици
- Изчисляване на сложни съставни функции: използване на графики
- Изчисляване на сложни съставни функции: от графики и таблици
- Намиране на сложни съставни функции
- Намиране на сложни съставни функции
- Изчисляване на сложни съставни функции (за напреднали)
- Идентифициране на сложни функции
- Идентифицирай сложни функции
© 2023 Khan AcademyУсловия за ползванеДекларация за поверителностПолитика за Бисквитки
Въведение към сложни функции
Научи защо използваме функция от функция с помощта на един пример за земеделие.
Кам е фермер. Всяка година той засява и отглежда царевица. Функцията по-долу ни дава количеството царевица в килограми (kg), която той очаква да отгледа, ако засее акъра земя.
Например, ако Кам засее два акра, той очаква да произведе царевица.
Кам иска да знае колко пари ще спечели от продажбата на царевицата. Затова той използва следната функция, за да предскаже сумата в долари, която ще получи от продажбата на килограма царевица.
Ако Кам произведе царевица, може да очаква приходи от .
Забележи, че Кам трябва да използва две отделни функции, за да изчисли очакваните приходи от засетите акри. Първата функция преобръща акри в царевица, докато втората функция преобръща количеството царевица в пари.
Нямаше ли да е чудесно, ако Кам можеше да състави функция, която да преобърне засети акри директно в очаквани приходи?
Съставяне на нова функция
Можем да намерим функцията, която преобръща засети акри директно в очаквани приходи! За да намерим тази нова функция, нека помислим за най-основния въпрос: колко пари очаква Кам да получи, ако засее царевица на акъра земя?
Ако Кам засади царевица на акра, той очаква да произведе килограма царевица. Ако произведе килограма царевица, той очаква да получи долара.
За да намерим общо правило, което преобръща акри директно в очаквани приходи, можем да намерим израза .
Но как да направим това? Забележи, че в израза входящата стойност на функция е . Тоест, за да намерим този израз, можем да заместим за във функция .
Тоест, функцията преобръща засети акри директно в очаквани приходи. Нека използваме тази нова функция, за да предвидим сумата пари, които Кам може да получи от засяването на два акра царевица.
долара
Кам може да очаква да получи долара от засяването на два акра царевица, което съответства на предишните ни стойности!
Дефиниране на съставни (сложни) функции
Това, което току-що намерихме, се нарича съставна (сложна) функция. Вместо да заместваме засети акри във функцията за царевицата и след това да заместваме количеството произведена царевица във функцията за приходите, открихме функция, която превръща засетите акри директно в очаквани приходи.
Направихме това като заместихме във функция или като намерихме . Нека наречем тази нова функция , което се чете като " е съставена с ".
Сега знаем, че . Това всъщност е приетото определение за съставна функция!
Визуализиране на двата метода
Ето визуално представяне, което да ни помогне да интерпретираме горното определение.
Като използваме двете функции и , функцията – функцията за царевицата – превръща два акра в 13 500 килограма царевица. После функцията – функцията за парите – превръща 13 500 килограма царевица в 12 100 долара.
Използвайки съставната функция, виждаме, че функцията превръща два акра директно в 12 100 долара.
Двете са еквивалентни!
Нека се упражним с няколко задачи.
Задача 2
Бен отглежда картофи. Функцията дава количеството картофи в килограми, които той очаква да произведе от засяването на акра земя. Функцията дава сумата в долари, която Бен очаква да получи, ако произведе килограма картофи.
Задача 3
Искаш ли да се присъединиш към разговора?
Все още няма публикации.