If you're seeing this message, it means we're having trouble loading external resources on our website.

Ако си зад уеб филтър, моля, увери се, че домейните *. kastatic.org и *. kasandbox.org са разрешени.

Основно съдържание

Видео транскрипция

Нека f е непрекъсната функция в затворения интервал [–2; 1], където f(–2) = 3 и f(1) = 6. Кое от следните твърдения следва от Теоремата за междинните стойности? Преди дори да погледна това, какво знаем за Теоремата за междинните стойности? Намира приложение тук, това е непрекъсната функция в затворен интервал. Знаем каква е стойността на функцията в точката –2. Тя е 3, така че нека го запиша. f(–2) = 3, а f(1) ето тук ни казват, че е равно на 6. Всичко, което ни казва Теоремата за междинните стойности, и ако това е напълно непознато за теб, те окуражавам да изгледаш урока за Теорема за междинните стойности, е, че ако имаме непрекъсната функция в някакъв затворен интервал, тогава функцията следва да преминава през всяка стойност между стойностите в крайните точки от интервала. Друг начина да се изкаже, е, че за всяко число L, което е между 3 и 6, има поне едно число C, има поне едно число C, едно C, между тях, или бих могъл да кажа, че C е в интервала от [–2; 1], т.е. в затворения интервал и такова, че f(C) = L. Това следва директно от Теоремата за междинните стойности. Казано на прост език, е, виж, това е непрекъсната функция. Всъщност, ще го покажа визуално след няколко секунди. Но е логично, че ако е непрекъсната, и ако исках да начертая графиката, не мога да повдигна молива си. Следователно е логично, че трябва да премина през всяка стойност между 3 и 6, или има поне една точка в този интервал, където преминавам през всяка стойност между 3 и 6. Нека да видим кои от отговорите изпълняват това условие и ще изберем само един. И така, f(C) = 4. Това ще бъде случай, когато L = 4. Тоест има поне едно число C в този интервал, такова, че f(C) = 4. Може да кажем това. Но това не е точно каквото ни казват тук. f(C) може да е 4 за поне едно C, което не е в този интервал. Спомни си, че C е нашият x. Това тук е нашият x. C ще бъде в този интервал и след няколко секунди ще го онагледя, така че да може да го потвърдим. Не казваме, че поне за едно C между 3 и 6 f(C) = 4. Казваме, че поне за едно C в този интервал ето тук f(C) ще бъде равно на 4. Важно е, че това 4 е между 3 и 6, защото това е стойността на функцията, а C трябва да бъде в нашия затворен интервал по оста x. Така че ще изключа тази възможност. Опитват се да ни заблудят. Добре. f(C) = 0 за поне едно число C между –2 и 1. Тук взимат верния интервал по оста x, където числото C ще се намира, но от Теоремата за междинните стойности не следва, че f(C) ще бъде равно на 0, защото 0 не се намира между 3 и 6. Следователно ще изключа тази възможност. Изключвам и тази възможност, защото казва, че f(C) = 0. Нека да видим сега. Останахме само с тази възможност, така че се надявам да проработи. f(C) е равно на 4... това изглежда приемливо, защото 4 се намира между 3 и 6... за поне едно число C между –2 и 1. О, да, защото това е в интервала точно тук. Имам добро усещане за този вариант и може също да си го представим визуално. Теоремата за междинните стойности, когато мислиш за нея визуално, има много логика. Нека да начертая оста x първо, а след това оста y. Ще ги направя в различни мащаби, поради оста y. Нека да видим. Ако това е 6, то това е 3. Това е моята ос y. Това е 1, това е –1. Това е –2. Функцията е непрекъсната в затворения интервал [–2; 1], а f(–2) = 3. Нека да го отбележа. f(–2) = 3. Това е точно ето тук, а f(1) = 6. Това е точно там. Нека да се опитам да начертая непрекъсната функция. Една непрекъсната функция включва тези точки и понеже е непрекъсната, един интуитивен начин да мисля за нея, е че не мога да повдигна молива си, когато чертая графиката ѝ, която съдържа тези две точки. Така че, не мога да направя ето това. Това би било повдигане на молива ми, а имаме непрекъсната функция. Следователно минава през всяка стойност. Както можем да видим, определено го прави. Минава през всяка стойност между 3 и 6. Може да минава и през други стойности, но със сигурност знаем, че трябва да минава през всяка стойност между 3 и 6. Ако мислим за 4, то 4 е точно ето тук. Така както го начертах изглежда, че почти минава през тази стойност върху оста y. Забравих да означа оста x ето тук. Но можеш да видиш, че минава през тази стойност за C, което в този случай е между –2 и 1. Можех да начертая графиката по много различни начини. Можех да я начертая както сега, така че да минава през тази точка. Има много начини, така че да мине през стойността 4 тук. Това може да е нашето число C, но още веднъж, то се намира в интервала между –2 и 1. Това може да е нашето число C в интервала между –2 и 1 или това може да е C в интервала –2 и 1. Просто така се получи на чертежа. Можех да начертая това нещо просто като права линия. Можех да го начертая по този начин и тогава изглежда, че минава през 4 само за x = - 1, и го прави около това място. Не е задължително вярно това, че минаваш или че стойността на функцията е 4 за поне едно C между 3 и 6. 3 и 6 дори не са на графиката ни тук. Следва да мина по целия път до 2 и до 3. Не е сигурно, че функцията минава през 4 за едно число C между 3 и 6. Дори не знаем какво прави функцията, когато x e между 3 и 6.
Кан Академия – на български благодарение на сдружение "Образование без раници".