If you're seeing this message, it means we're having trouble loading external resources on our website.

Ако си зад уеб филтър, моля, увери се, че домейните *. kastatic.org и *. kasandbox.org са разрешени.

Основно съдържание
Текущ час:0:00Обща продължителност:3:16

Чертане на графика на квадратни изрази: вид с отделен точен квадрат ("параболичен" вид)

Графика на квадратната функция (първа част)

Видео транскрипция

Иска се да построим графиката на уравнението y= –2(х – 2)^2 + 5. Нека извадя бележника си, за да можем да помислим върху това. И така, y= –2(х – 2)^2 + 5. Когато видиш едно квадратно уравнение или графика на парабола, изразени по този начин, веднага можеш да се сетиш, че този член ето тук винаги ще бъде положителен, защото представлява някаква величина на квадрат. Или мога да кажа, че винаги ще бъде неотрицателен. Той може да бъде равен на 0. Той винаги ще бъде някаква сума, повдигната на квадрат. И след това го умножаваме по отрицателно число. Така че цялото това нещо тук ще бъде неположително. То винаги ще бъде по-малко или равно на 0. И така, това нещо е винаги по-малко или равно на 0. Максималната стойност, която у може да има, е когато тази част е равна на 0. Следователно максималната стойност за у е при 5. Максималната стойност на у е 5. А кога се случва това? у достига 5, когато цялото това нещо е 0. А кога това нещо е равно на 0? То е равно на 0, когато (х – 2) е равно на 0. А (х – 2) е равно на 0, когато х е равно на 2. Следователно точката (2; 5) е максималната точка за тази парабола. И тя всъщност е върхът. Нека да я начертаем, точката (2; 5). Това е оста у. Това е оста х. Това е 1, 2, 1, 2, 3, 4, 5. Това тук е точката (2; 5). Това е максимална точка, това е максималната точка за тази парабола. И сега искам да намерим още две точки, за да мога да определя параболата. Три точки напълно определят параболата. И така, това е едната – върхът. Сега искам да намеря две точки, които са на еднакво разстояние от върха. Най-лесният начин е да намеря какво се случва, когато х е равно на 1 и когато х е равно на 3. Всъщност мога да направя таблица тук, нека го направя. Интересува ме х равно на 1, 2 и 3 и какви са съответните у. Вече знаем, че когато х е равно на 2, у е равно на 5. (2; 5) е върхът. Когато х е равно на 1, 1 минус 2 е минус 1, повдигнато на квадрат е просто 1. Така че това ще бъде минус 2 плюс 5, което е равно на 3. И когато х = 3, това е 3 – 2, което е 1, повдигнато на квадрат е 1, по минус 2 е минус 2, плюс 5 е също 3. Вече имаме три точки. Имаме точката (1; 3), точката (2; 5) и точката (3; 3) за тази парабола. Нека се върнем към упражнението и да нанесем тези три точки. Имаме точката (1; 3), точката (2; 5) и имаме точката (3; 3). И сега напълно определихме параболата.
Кан Академия – на български благодарение на сдружение "Образование без раници".