Ако виждаш това съобщение, значи уебсайтът ни има проблем със зареждането на външни ресурси.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Основно съдържание

Множество от стойностите на квадратни функции

Научи как да намериш множеството от стойностите на всяка квадратна функция от нейната формула, която използва върха на параболата.
В тази статия ще научиш как да намираш множеството от стойностите на квадратни функции.
С други думи ще научим как да определяме множеството от всички възможни стойности на дадена квадратна функция.

Нека разгледаме една примерна задача

Искаме да намерим множеството от стойностите на функцията f(x)=2(x+3)2+7.
В тази статия, също както сме свикнали да означаваме аргументите на дадена функция с буквата x, ще означаваме стойностите на функцията с буквата y. Например y=7 е стойността на f за аргумент x=3 (това е просто друг начин да кажем f(3)=7).
Намирането на множеството от стойностите на една функция, гледайки само формулата ѝ, е доста трудно! В действителност дори не е толкова лесно да кажем дали определена единична стойност е възможна изходяща стойност на функцията!
Например y=9 възможна стойност на функция f ли е?
За да отговорим на този въпрос, трябва да заместим с формулата на f в f(x)=9 и да го намерим. Ако намерим решение, тогава y=9 е възможна изходяща стойност на функцията. В противен случай, не е.
Не е възможно обаче да направим тази проверка за всяка възможна изходяща стойност, защото те са безкраен брой! Тази статия ще ти покаже два възможни метода за да решаване на тази задача.

Метод за решение 1: Графичен подход

Оказва се, че графиките са наистина доста полезни при изучаването на множеството от стойностите на дадена функция. За щастие имаме доста добри умения за чертането на квадратни функции.
Ето графиката на y=f(x).
Сега е ясно видимо, че y=9 не е възможна стойност на функцията, тъй като графиката не пресича никъде правата y=9.
Нека направим подобна проверка за още няколко стойности на y.
Въпрос 1Въпрос 2
y=5 възможна изходяща стойност ли е на функция f?
Избери един отговор:

y=50 възможна изходяща стойност ли е на функция f?
Избери един отговор:

Видяхме как можем да проверим дали дадена стойност е възможна изходяща стойност на функцията, като използваме графика. Една графика всъщност може да ни покаже всички възможни стойности на функцията!
Например графиката на y=f(x) показва, че 7 (координатата y на върха) е максималната стойност y, която може да ни даде функцията. Освен това тъй като параболата е отворена надолу, всяка стойност на y под 7 е също възможна стойност на функцията.
С други думи множеството от стойностите на f са всички стойности на y, които са по-малки или равни на 7. Това е всичко! Математически можем да напишем множеството от стойности на f като {yR | y7}.

Твой ред е!

Разгледай функцията g(x)=(x4)25, която е начертана по-долу.
Какво е множеството от стойностите на функцията g ?
Избери един отговор:

Метод за решение 2: Алгебричен подход

Сега може би си задаваш въпроса: "Винаги ли трябва да чертая графиката, когато искам да намеря множеството от стойности на дадена функция?". Имаш основание да зададеш този въпрос! Мързелът е чудесна мотивация за намирането на по-добри начини за решаване на задачи.
Нека помислим върху нещата, които решихме по-горе, и потърсим някакъв модел.
Графиката на първата функция f(x)=2(x+3)2+7 е отворена надолу парабола, чийто връх е при y=7. Вследствие на това множеството на стойностите и включва всички стойности на y, които са по-малки или равни на 7.
Графиката на втората функция g(x)=(x4)25 е отворена нагоре парабола, чийто връх е при y=5. Вследствие на това множеството от стойностите ѝ включва всички стойности на y, които са по-големи или равни на 5.
Оказва се, че всичко което трябва да знаем, за да определим множеството от стойностите на дадена квадратна функция, е стойността y на върха на графиката ѝ и дали тя е отворена нагоре или надолу.
Това е лесно да се намери за квадратна функция, представена чрез уравнение във вид с отделен точен квадрат ("параболичен" вид), y=a(xh)2+k. В този вид върхът е при y=k, а параболата се отваря нагоре, когато a>0 и надолу, когато a<0.

Твой ред е

Използвай наученото, за да намериш множеството от стойностите на h(x)=12(x3)2+2.
{yR|
}

Искаш ли да се присъединиш към разговора?

Все още няма публикации.
Разбираш ли английски? Натисни тук, за да видиш още дискусии в английския сайт на Кан Академия.