Текущ час:0:00Обща продължителност:5:29

Решения на системи уравнения: определени срещу неопределени

Видео транскрипция

Каква е системата линейни уравнения по-долу – определена или неопределена? Дадено ни е, че х + 2у = 13, и 3х – у = –11. За да отговорим на този въпрос, трябва да знаем какви са тези два термина – определена и неопределена система. Първо да разгледаме определената система от уравнения. Една определена система уравнения има поне едно решение. Поне едно решение. А неопределената система от уравнения, както можеш да предположиш, няма решения. Система без решения. И ако помислим за графично представяне, как би изглеждала графиката на една определена система? Нека начертая една примерна графика. Това е абсцисната ос, а това е ординатната ос. И ако имам две прави, които се пресичат, това ще е определена система. Това е едната права, а това е другата права. Те очевидно имат това едно решение, там, където двете се пресичат, така че налице е определена система. Друга определена система ще имаме, ако двете прави представляват една и съща права, понеже тогава ще се пресичат в хиляди точки, всъщност в неопределен брой точки. Та нека една от тези прави изглежда така. Тогава другата права всъщност е абсолютно същата права. Един вид тя се намира върху тази права. И те двете се пресичат във всяка една точка от тези прави, така че и тук имаме определена система. Една неопределена система е без решения. Нека пак начертая тези оси. Чертая осите. Няма никакви решения. Така че единственият начин да имаме две прави в две измерения, е когато няма решения, което става ако правите не се пресичат, или когато са успоредни. Едната права ще изглежда така. Тогава другата права ще е със същия наклон, но ще е малко преместена. Тя ще има различна пресечна точка с у, и ще изглежда така. Така изглежда една неопределена система. При нея правите са успоредни. Тази тук е неопределена. И това, което можем да направим, е да начертаем една примерна графика на тези две прави и да видим дали се пресичат. Друг начин, по който можем да го направим, е като погледнем наклона. Ако имат един и същ наклон и различни пресечни точки с у, тогава пак ще имаме неопределена система. Но нека ги изобразим графично. Нека начертая оста Ох, и след това Оу. Оста Оу. Това е х, а това тук е у. И сега има два начина, по които можем да ги начертаем. Най-лесният начин е като намерим по две точки на всяка от правите, които удовлетворяват всяко от тези уравнения, и това е достатъчно за определянето на една права. Та при тази първата... Нека направя малка таблица със стойности за х и за у. Когато х е 0, имаме, че 2у = 13, или у = 13/2, което е 6 и 1/2. Т.е. когато х е 0, у е 6 и 1/2. Ще ги нанеса тук. Имаме точка с координати (0; 13/2). Сега нека видим кога у е 0. Когато у е 0, тогава 2 по 0 е 0. Тогава х е равно на 13. х = 13. Т.е. имаме точката (13; 0). Тук имаме (0; 6 и 1/2), а (13; 0) ще е там. Правим го приблизително – (13; 0). Така това уравнение тук горе може да бъде представено чрез тази права. Нека я начертая по най-добрия начин, по който мога. Ще изглежда по този начин. Нека сега преминем тук. Нека обърнем внимание на тази права. Пак правя малка таблица със стойности за х и за у. Търся две точки върху тази графика. Когато х = 0, 3 пъти по 0 си е 0. Получаваме, че –у = –11, или получаваме, че у = 11. Имаме точката (0; 11), а това може би е там някъде. (0; 11) се намира върху тази права. И тогава, когато у е 0, имаме 3х – 0 = –11, или 3х = –11. Ако разделим двете страни на 3, получаваме х = –11/3. Минус 11 върху 3. А това е точно равно на –3 и 2/3. Когато у е 0, тогава х е –3 и 2/3. И това може би е 6, така че –3 и 2/3 ще е тук. Това е точката (–11/3; 0). Така че графиката на второто уравнение ще изглежда така. Ще има следния вид. Сега, очевидно – може да не съм бил напълно точен, когато начертах на ръка тази графика, но очевидно тези две прави се пресичат. Пресичат се тук. И за да отговорим на зададения въпрос, дори не е нужно да намираме точката, в която се пресичат. Само трябва да видим ясно, че тези две прави се пресичат. Това представлява една определена система уравнения. Тя има едно решение. Трябва да е налице поне една точка, за да е определена системата. И нека повторим, това е определена система уравнения.