Текущ час:0:00Обща продължителност:5:20

Преброяване на единични квадрати за намиране на формулата за лице

Видео транскрипция

Имаме три правоъгълника тук, и също имаме техните размери. Имаме тяхната височина и ширина. Това тук има еднаква височина и ширина, значи е квадрат. Да помислим колко пространство ще е нужно за тях на моя екран. И тъй като изразяваме всичко с метри, всички измервания са в метри, ще пресметна лицето в квадратни метри. Нека да видим колко квадратни метра мога да намеря в този жълт правоъгълник, без да излизам от рамките му, и без застъпване. Мога да намеря 1 квадратен метър... Да не забравяме, че един квадратен метър представлява квадрат, с дължина 1 метър и ширина 1 метър. Така че това е 1 квадратен метър, 2, 3, 4, или 5, и 6 квадратни метра. И виждаме тук, че лицето е 6 квадратни метра. Лицето е равно на 6 квадратни метра. Но нещо може да ни се изясни. Наистина ли трябваше да броя 1, 2, 3, 4, 5, 6? Може би забеляза, че това би могло да се разгледа реално като 2 групи по 3. Нека изясня това. Мога да разглеждам това като група от 3 и след това още една група от 3. Как ги получих тези групи от 3? Стана така, защото тук ширината е 3 метра. Така мога да сметна 3 квадратни метра страна по страна. А как получих двете групи? Ами тук имаме дължина 2 метра. Така че друга възможност е да преброя тези шест елемента, можех кажа: Виж, дължината е 2 метра. Така че ще имам 2 групи по 3. Бих могъл да умножа 2 пъти по 3, 2 от групите ми по 3, и да получа 6. Може да кажеш: “Чакай, това съвпадение ли е, че ако взема дължината и я умножа по ширината, получавам лицето?” Не, не е съвпадение, защото когато вземем дължината, по същество казваме: “Колко реда имам?” И тогава казваме, когато умножим по ширината, казваме, добре, колко от тези квадратни метра мога да включа в един ред? Това определено е бърз начин на броене на квадратните метри, които имаме. И човек може да каже, че 2 метра по 3 метра е равно на 6 квадратни метра. И сега човек може да каже: “Не знам дали това важи винаги.” Да видим дали е приложимо и за другите правоъгълници тук. И въз основа на това, което видяхме, нека вземем дължината, 4 метра, и умножим по ширината, умножаваме по 2 метра. 4 умножено по 2 прави 8. Значи това ще ни даде 8 квадратни метра. Нека видим дали е така. 1, 2, 3, 4, 5 - виждаме, че отиваме надясно - 6, 7 и 8. Така че лицето на този правоъгълник наистина е 8 квадратни метра. Което може да се разглежда като 4 групи по 2. Буквално можем да го разгледаме като 4 групи по 2. Ето откъде идват тези 4 по 2. Тук можем да разгледаме това като 4 групи по 2, ето така. Или можем да го разглеждаме като 2 групи по 4, така че да има 1 група по 4 тук. И можем да разгледаме това като 2 пъти по 4, и като 2 групи по 4. Искам да го начертая малко по-разбираемо. Така, вероятно може да се пресметне какво е лицето на този правоъгълник. Всъщност това е квадрат, понеже е с равни дължина и ширина. Умножаваме дължината, 3 метра, по ширината, тоест по 3 метра, за да получим 3 по 3, което е 9. 9 квадратни метра. И нека отново го проверим, за да сме сигурни за това умножение на мерките в тези правоъгълници. Така, имаме 1, 2, 3, 4, 5, 6, 7, 8 и 9. Всичко съвпада. Пресмятаме с колко квадратни метра можем да препокрием цялото това, без застъпване, без да излизаме от границите. Получаваме абсолютно същото нещо - като че ли сме умножили 3 пъти по 3, ако е използвано умножението на дължината с ширината в метри.