If you're seeing this message, it means we're having trouble loading external resources on our website.

Ако си зад уеб филтър, моля, увери се, че домейните *. kastatic.org и *. kasandbox.org са разрешени.

Основно съдържание
Текущ час:0:00Обща продължителност:3:46

Видео транскрипция

Нека g(x) = 1/x. Може ли да приложим теоремата за средната стойност, за да докажем, че има стойност c, такава че g(c) = 0, а –1 ≤ c ≤ 1? Ако да, то напишете доказателството. За да използваш въобще теоремата за средната стойност, функцията трябва да е непрекъсната в интервала, в който е зададено с. А този интервал е –1 ≤ c ≤ 1. А 1/x не е непрекъсната в този интервал. Тя не е дефинирана, когато x = 0. Следователно може да напишем: "Не, защото g(x) не е дефинирана." или може да се каже, че не е непрекъсната. Също означава, че не е дефинирана във всяка точка от интервала, но нека да запишем, че не е непрекъсната в затворения интервал [–1; 1]. Може да поставим в скоби, че не е дефинирана за x = 0. Нека сега да видим втория въпрос. "Може ли да се приложи теоремата за средната стойност, за да се докаже, че уравнението g(x) = 3/4 има решение, когато за x е изпълнено 1 ≤ x ≤ 2? Ако да, то напишете доказателството." Добре, нека първо да погледнем интервала. Ако мислим за интервала [1; 2], то да, нашата функция ще бъде непрекъсната в този интервал. Следователно може да кажем, че g(x) е непрекъсната в затворения интервал [1; 2]. И ако искаш да допълниш доказателството тук, може да кажеш, че g е дефинирана за всички реални числа, такива че x ≠ 0. Може да запиша, че g(x) е дефинирана за всички реални числа, такива че x ≠ 0. И може да допълниш, че рационални функции като 1/x са непрекъснати във всички точки от своето множество. Това наистина доказва, че g(x) е непрекъсната в този интервал. След това искаме да видим какви стойности приема g в крайните точки. Всъщност, ето това са крайните точки, които наблюдаваме тук. g(1) ще бъде равно на 1/1, което е 1, а g(2) ще бъде равно на 1/2. 3/4 се намира между g(1) и g(2). Според теоремата за средната стойност трябва да има x, което е в интервала, за който става дума, т.е. [1; 2], такова, че g(x) = 3/4. Следователно отговорът е: Да. Можем да използваме теоремата за средната стойност, за да докажем, че уравнението g(x) = 3/4 има решение. И сме готови.